All pages
Powered by GitBook
1 of 1

Loading...

Using MariaDB With R

Introduction to R

R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, …), graphical techniques, machine learning packages and is highly extensible.

One of R’s strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.

The R Environment

R is an integrated suite of software facilities for data manipulation, calculation, and graphical display.

It includes:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either on-screen or on hardcopy, and

• a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

Using R with MariaDB

R Installation

Some basic notions / tips on how to use R along with MariaDB are the following:

A. The recommended R distribution is “Base R”:

B. The recommended R GUIs are RStudio Desktop, or RStudio Server:

Alternative GUIs would be:

  • RCode (PGM Solutions): .

“R” and “MariaDB Server” can be installed either in the same server, or in different servers, as an ODBC communication protocol will be used for the exchange of data between the two environments.

Data Transfer between R and MariaDB

Package: "odbc"

For the transfer of data between MariaDB Server and R Environment, it is recommended R's "odbc" Package:

  • “odbc" is a new R package available on CRAN (Since 2017-02-05), and maintained by RStudio, which is designed to comply with the DBI specification.

  • Tutorials on how to use R's "odbc" package can be found here:

    • Setting up ODBC Drivers:

    • "odbc" R Package:

The "odbc" package requires to have previously installed the MariaDB or MySQL ODBC connector:

For installing the "odbc" package from CRAN, execute in R:

Package: "RMariaDB"

“RMariaDB” R library, is a modern 'MariaDB' client based on 'Rcpp'.

For installing RMariaDB package through CRAN, execute the following R statement:

And for connecting to MariaDB:

Other Packages: "readr", "RODBC"

There are other alternatives for data transfer between R and MariaDB:

  • “readr” R package, for writing / reading CSV files. To be used in MariaDB along with “LOAD DATA INFILE”.

  • "RODBC" R package: Robust and well-tested (Since 2000-05-24) package which enables data transfer between R and MariaDB by means of an ODBC connector:

    • It is slightly slower than RStudio's new "odbc" package (See benchmarks):

    • For bug report to the RODBC package maintainer, use the following R statement: bug.report(package = "RODBC")

R Programming Resources

A) Programming

Recommended resources for learning how to program in R are the following:

B) Statistics

A recommended book for understanding the underlying statistics in the R packages is:

C) Cheatsheets: Concept Summary

  • Rstudio Cheatsheets are a recommended and valuable resource:

  • Along with the following Base R reference card:

D) Search Engine & R Package Spotlight

  • Search Engines:

  • Information on new R packages is regularly published in the following websites:

E) Statistical / Unsupervised Machine Learning, Deep Learning and Artificial Intelligence

H2O.AI

The R Programming language has support for the H2O.ai library (), which enables to create in-memory multi-cluster GPU powered machine learning models.

For installing H2O.ai through CRAN, execute:

The following R Statements can be used for importing a MariaDB table to H2O.ai using the R Front End:

  • import_sql_table: "This function imports a SQL table to H2OFrame in memory".

  • import_sql_select: "This function imports the SQL table that is the result of the specified SQL query to H2OFrame in memory".

NOTE: Be sure to start the h2o.jar in the terminal with your downloaded JDBC driver in the classpath:

KERAS

offers an interface to , a high-level neural networks 'API'.

'Keras' was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both 'CPU' and 'GPU' devices.

R LIBRARIES: CARET

A book which introduces core Machine Learning concepts:

F) Text Mining

Documentation on how to perform Text Mining in R can be found in the book "Text Mining With R":

G) Shiny Web Apps & RMarkdown Documents

SHINY WEB APPS

R Package makes it incredibly easy to build interactive web applications with R.

Automatic "reactive" binding between inputs and outputs and extensive prebuilt widgets make it possible to build beautiful, responsive, and powerful applications with minimal effort.

For deploy Shiny Web Applications using Open Source Alternatives, you can either use:

RMARKDOWN DOCUMENTS

H) Advanced R Resources

Some of the most advanced R resources for fully understanding the internals and nuances of the R Programming Language are the following:

  • A vignette on how to use the RODBC package can be found here: RODBC CRAN Vignette

  • Mastering Spark with R (O'Reilly; Javier Luraschi, Kevin Kuo, Edgar Ruiz)
  • R Packages (Hadley Wickham; O’Reilly)

  • R-bloggers

  • Towards Data Science

  • MRAN: Package Spotlight

  • Machine Learning with R and H2O (Mark Landry): Booklet Online Version
  • Deep Learning with H2O: Vignette

  • CRAN
    RStudio
    RCode
    CRAN odbc
    DB RStudio Drivers
    DB RStudio odbc Usage
    MariaDB ODBC Connector
    MySQL ODBC Connector
    CRAN RODBC
    RStudio odbc
    R Cookbook Second Edition (O’Reilly Media; Paul Teetor; James (JD) Long)
    R Graphics Cookbook Second Edition (O’Reilly Media; Winston Chang)
    R for Data Science (O’Reilly Media; Garrett Grolemund, Hadley Wickham)
    Advanced R Second Edition (CRC R Series; Hadley Wickham)
    Practical Statistics for Data Scientists (O’Reilly Media; Peter Bruce, Andrew Bruce)
    RStudio Cheatsheets: Webpage
    R Reference Card v2
    RSeek: For searching any R related information (Based on Google).
    RPackages: Search and stats for CRAN packages.
    h2o
    H2O.ai: Webpage
    H2O.ai Algorithms: Cheatsheet
    h2o R Package Functions: Cheatsheet
    Practical Machine Learning with H2O (O'Reilly Media; Darren Cook)
    R package keras
    Python's 'Keras'
    R interface to Keras: Webpage
    Deep Learning With R (François Chollet with J. J. Allaire, Manning)
    Keras Rstudio Cheatsheet
    Introduction to Machine Learning with R (O'Reilly; Scott Burger)
    Text Mining With R: A Tidy Approach (O’Reilly Media; Julia Silge and David Robinson): Book Online Version
    Shiny
    Shiny Written Tutorials
    Shiny R Package Cheatsheet
    RInno: CRAN Webpage (Windows)
    ShinyProxy: Webpage
    Shiny Server (Open Source Edition): Webpage
    R Markdown: The Definitive Guide (Book).
    R Markdown Cheatsheet.
    Chapman & Hall/CRC The R Series: Subject-specific Books
    install.packages("odbc")
    install.packages("RMariaDB")
    library(RMariaDB)
    
    con <- dbConnect(
      drv = RMariaDB::MariaDB(), 
      username = NULL,
      password = NULL, 
      host = NULL, 
      port = 3306
    )
    install.packages("h2o")
    connection_url <- "jdbc:mariadb://172.16.2.178:3306/ingestSQL?&useSSL=false"
    username <- "root"
    password <- "abc123"
    
    # Whole Table:
    table <- "citibike20k"
    my_citibike_data <- h2o.import_sql_table(connection_url, table, username, password)
    
    # SELECT Query:
    select_query <-  "SELECT  bikeid  FROM citibike20k"
    my_citibike_data <- h2o.import_sql_select(connection_url, select_query, username, password)
    java -cp <path_to_h2o_jar>:<path_to_jdbc_driver_jar> water.H2OApp

    This page is: Copyright © 2025 MariaDB. All rights reserved.