
MARIADB & JSON:
FLEXIBLE DATA
MODELING

WHITEPAPERAUGUST 2019

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

MARIADB ENTERPRISE
Transactions and Analytics, UNITED

MariaDB Enterprise is an open source database for transactional, analytical or hybrid transactional/analytical

processing at scale. By preserving historical data and optimizing for real-time analytics while continuing to process

transactions, MariaDB Enterprise provides businesses with the means to create competitive advantages and

monetize data – everything from providing data-driven customers with actionable insight to empowering them with

self-service analytics.

MariaDB Server
MariaDB Server is the foundation of the MariaDB Enterprise. It is the only open source database with the same

enterprise features found in proprietary databases, including Oracle Database compatibility (e.g., PL/SQL compatibility),

temporal tables, sharding, point-in-time rollback and transparent data encryption.

MariaDB ColumnStore
MariaDB ColumnStore extends MariaDB Server with distributed, columnar storage and massively parallel processing

for ad hoc, interactive analytics on hundreds of billions of rows via standard SQL – with no need to create and maintain

indexes, and with 10% of the disk space using high compression.

MariaDB MaxScale
MariaDB MaxScale provides MariaDB Enterprise with a set of services for modern applications, including transparent
query routing and change-data-capture for hybrid transactional/analytical workloads, high availability (e.g., automatic
failover) and advanced security (e.g., data masking).

Flexible Data Modeling in MariaDB: JSON

INTRODUCTION
The role of enterprise open source software in modern

infrastructure is expanding -the operating system,

the middleware, and now, the database. In fact, many

organizations have strategic mandates requiring

the evaluation of enterprise open source software

in order to limit the use of proprietary software. It

not only reduces costs and supports the shift from

capital expenses to operating expenses, it enables

enterprises to benefit from community collaboration

and innovation on a global scale.

This white paper compares the leading enterprise

open source database, MariaDB TX, with the top

three proprietary databases: Microsoft SQL Server,

IBM Db2 and Oracle Database. It does not compare

every feature provided by databases, but rather

it focuses on the core enterprise requirements

a database must meet in order to support

mission-critical, business-critical applications:

high availability, disaster recovery, performance,

scalability, efficiency, security, analytics, schema

and SQL.

MariaDB became the leading enterprise open

source database with the release of MariaDB TX

3.0, introducing enterprise features previously only

available in proprietary and expensive databases

from Microsoft, IBM and Oracle – temporal tables

and queries, distributed partitions (i.e., sharding),

data masking, data obfuscation and Oracle-

compatible sequences, data types and stored

procedures.

This white paper is intended to help database

administrators (DBAs), developers and architects

understand how MariaDB TX compares with

proprietary databases from Microsoft, IBM

and Oracle, and how it meets core enterprise

requirements for business as well as operations and

development teams.

The comparisons are based on Microsoft SQL

Server 2017 Enterprise, IBM Db2 Advanced

Enterprise Server Edition 11.1 for Linux, Unix and

Windows (LUW), Oracle Database Enterprise

Edition 18c and MariaDB TX 3.

WHITEPAPER

TABLE OF CONTENTS

1 INTRODUCTION

2 BENEFITS AND LIMITATIONS

2 USE CASES

3 JSON FUNCTION

3 DEFINITIONS

3 CREATE

4 READ

10 INDEXES

11 UPDATE

14 DATA INTEGRITY

15 CONCLUSION

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

INTRODUCTION

With a history of proven reliability, relational databases are trusted to ensure the safety and integrity of

data. In the digital age, where offline interactions become online interactions, data is fundamental to

business success, powering mission-critical web, mobile and Internet of Things (IoT) applications and

services.

The safety and integrity of data has never been more important. However, the digital age is creating new challenges. It

is leading to new use cases, requiring businesses to innovate faster and developers to iterate faster – and diversity of

data is expanding with increased use of semi-structured data in modern web and mobile applications.

As a result, businesses had to decide between the reliability of relational databases and the flexibility of schemaless

databases. When faced with this choice, many businesses chose to deploy multiple types of databases, increasing

both the cost and complexity of their database infrastructure.

With strict schema definitions and ACID transactions, relational databases ensure the safety and integrity of data. But,

what if a relational database supported flexible schemas? What if a relational database could not only support semi-

structured data, but could enable applications to extend or define the structure of data on demand, as needed?

That’s the power of MariaDB Server, ensuring data is safe for the business while at the same time supporting schema

flexibility and semi-structured data for developers. With dynamic columns and JSON functions, flexible schemas and

semi-structured data (e.g., JSON) can be used without sacrificing transactions and data integrity.

With MariaDB, it is now possible to:

• Combine relational and semi-structured and/or JSON data

• Query semi-structured data and/or JSON data with SQL

• Modify semi-structured and/or JSON in an ACID transaction

• Extend the data model without modifying the schema first

1

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Benefits and Limitations
There are many benefits to using JSON, for both the business and its developers. However, there are limitations as

well. In order to benefit from flexible schemas, applications must share responsibility for managing both the schema

and the integrity of data.

Benefits

• Faster time to market: develop new features without waiting for schema changes

• Easier development: build applications and features using simpler data models and queries

• More use cases: support modern and emerging use cases – web, mobile and IoT

• Simpler infrastructure: use a single database for both legacy and modern applications

• Less risk: support flexible data models without sacrificing reliability, consistency and integrity

Limitations

• Functions: applications must use SQL functions to read, write and query JSON documents

• Data types: applications are responsible for managing the data types of dynamic columns

Use Cases
With JSON functions, organizations in every industry - from finance to retail - can support modern use cases for mis-

sion-critical applications, or simplify existing use cases, by combining the flexibility and simplicity of JSON with the

reliability of a relational database with transactions.

• Advertising: personalization with user and visitor profiles, clickstream data, ad metadata

• Finance: customer 360 with customer accounts, financial transactions, ATM locations

• Insurance: content management with policies, applications / forms, claims

• IoT: management and monitoring with device configuration, sensor readings

• Manufacturing: inventory with bill of materials, process flows, quality control events

• Media and Entertainment: digital metadata with stream state, program guides, entitlements

• Retail: engagement with product catalogs, user sessions / cookies, purchases, shopping carts

• Transportation: asset management with fleet location, status and cargo

2

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Applications can read, write, index and query JSON documents. There are JSON functions for

reading and writing JSON fields, objects and arrays as well as utility functions for formatting,

searching and validating JSON fields and documents.

Definitions
To use JSON functions, create a column for MariaDB Server to store JSON documents as plain text (e.g., VARCHAR,

TEXT, etc.).

In the example below, JSON will be stored in the attr column with a NOT NULL constraint. However, a NOT NULL

constraint is optional. In addition, there is a CHECK constraint using JSON_VALID to ensure the attr column contains

valid JSON.

JSON FUNCTIONS

Example 1: Create a table with a column for JSON with validation
CREATE TABLE IF NOT EXISTS products (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

type VARCHAR(1) NOT NULL,

name VARCHAR(40) NOT NULL,

format VARCHAR(20) NOT NULL,

price FLOAT(5, 2) NOT NULL,

attr JSON NOT NULL);

Create
To insert a row that contains a JSON document, set the column value using the string value of the JSON document.

In the example below, two products are inserted into the products table: a book (Foundation) and a movie(Aliens).

While every product has a type, name, format and price, books have an author and a page count as well,while movies

have audio and video properties and one or more cuts - complex fields with nested values.

3

WHITEPAPERFlexible Data Modeling in MariaDB: JSON

Example 3: Read fields within a JSON document
SELECT name, format, price,
JSON_VALUE(attr, ‘$.video.aspectRatio’) AS aspect_ratio
FROM products
WHERE type = ‘M’;

Name Format Price Aspect_ratio

Aliens Blu-ray 13.99 1.85:1

Read
There are two JSON functions for reading fields within a JSON document: JSON_VALUE to read fields with simple

values (e.g., strings and numbers) and JSON_QUERY to read fields with complex values (e.g., objects and arrays).

Fields
To read a simple field within a JSON document, use JSON_VALUE with the name of the column where the JSON

document is stored and the path to the field.

In the example below, the query returns the name, format, price and aspect ratio of movies using JSON_VALUE to read

the aspectRatio field of the JSON document (stored in the attr column).

Example 2: Create rows with valid JSON documentation
INSERT INTO products (type, name, format, price, attr) VALUES

(‘M’, ‘Aliens’, ‘Blu-ray’, 13.99,’{“video”: {“resolution”: “1080p”, “aspectRatio”: “1.85:1”}, “cuts”:

[{“name”: “Theatrical”, “runtime”: 138}, {“name”: “Special Edition”, “runtime”: 155}], “audio”:

[“DTS HD”, “Dolby Surround”]}’);

 INSERT INTO products (type, name, format, price, attr) VALUES

(‘B’, ‘Foundation’, ‘Paperback’, 7.99, ‘{“author”: “Isaac Asimov”, “page_count”: 296}’);

4

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

To query all rows with a where a field exists in the JSON document, in one or all paths, use JSON_CONTAINS

with the name of the column where the JSON document is stored, “one” if it any path needs to exist or “all” if

every path needs to exist and the path(s) to the field.

In the example below, the query returns the name, format, price and aspect ratio of all movies with a resolution

- the JSON document in the attr column must contain the resolution field.

Example 5: Read rows where a specific field exists within a JSON document
SELECT name, format, price,

JSON_VALUE(attr, ‘$.video.aspectRatio’) AS aspect_ratio
FROM products
WHERE type = ‘M’ AND

JSON_CONTAINS_PATH(attr, ‘one’, ‘$.video.resolution’) = 1;

Example 4: Read a field within a JSON document that does not exist
In the example below, the query returns the name, format, price and aspect ratio of all products, including
books. If the field does not exist in the JSON document, JSON_VALUE will return NULL value, not an error.

SELECT type, name, format, price,
JSON_VALUE(attr,’$.video.aspectRatio’) AS aspect_ratio
FROM products;

Type Name Format Price aspect_ratio

M Aliens Blu-ray 13.99 1.85:1

B Foundation Paperback 7.99 NULL

Note: Reading a field that does not exist in the JSON document

Name Format Price Aspect_ratio

Aliens Blu-ray 13.99 1.85:1

5

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Example 6: Evaluate dynamic columns in the WHERE clause of a query
SELECT name, format, price,

JSON_QUERY(attr, ‘$.audio’) AS audio
FROM products
WHERE type = ‘M’;

To read an element within an array based on its index position, use JSON_VALUE if the element is a string or

number, JSON_QUERY if the element is an array or object.

In the example below, the query returns the name, format, price and default audio of movies using JSON_VALUE

to read the first element of the audio array within the JSON document (stored in the attr column).

Array

To read an array within a JSON document, use JSON_QUERY with the name of the column where the JSON

document is stored and the path to the array.

In the example below, the query returns the name, format, price and audio of movies using JSON_QUERY to read

the audio field (an array) of the JSON document (stored in the attr column).

Example 7: Read the first element of an array within a JSON document
SELECT name, format, price,

JSON_VALUE(attr, ‘$.audio[0]’) AS default_audio
FROM products
WHERE type = ‘M’;

Name Format Price Audio

Aliens Blu-ray 13.99 [“DTS HD”, “Dolby Surround”]

Name Format Price Aspect_ratio

Aliens Blu-ray 13.99 DTS HD

6

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Objects

To read an object within a JSON document, use JSON_QUERY with the name of the column where the JSON

document is stored and the path to the object.

In the example below, the query returns the name, format, price and video of movies using JSON_QUERY to read

the video field (an object) of the JSON document stored in the attr column.

Example 8: Read an object field within a JSON document
SELECT name, format, price,

JSON_QUERY(attr, ‘$.video’) AS video
FROM products
WHERE type = ‘M’;

Name Format Price Aspect_ratio

Aliens Blu-ray 13.99 {“resolution”: “1080p”, “aspectRatio”: “1.85:1”}

Note: Reading multiple fields, arrays and/or objects within a JSON document

Example 8: Read multiple object fields within a JSON document
A query can return multiple fields, including arrays and/or objects, as separate columns in the row(s) returned.

SELECT name,
JSON_QUERY(attr, ‘$.audio’) AS audio,
JSON_QUERY(attr, ‘$.video’) AS video

FROM products
WHERE type = ‘M’;

Name Audio Video

Aliens [“DTS HD”, “Dolby Surround”] {"resolution": "1080p", "aspectRatio": "1.85:1"}

7

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

In addition, JSON functions can be used in the WHERE clause.

In the example below, the query returns the id, name, format and price of all movies with a video resolution of

“1080p”.

To read multiple columns as a JSON document, use JSON_OBJECT with multiple name/value pairs – the name of

the field to be created in the JSON document with the column name containing the value.

In the example below, the JSON_OBJECT function is used to create a JSON document with fields for the name,

format and price columns.

Example 10: Evaluate fields within a JSON document in the WHERE clause
SELECT id, name, format, price
FROM products
WHERE type = ‘M’ AND

JSON_VALUE(attr, ‘$.video.resolution’) = ‘1080p’;

ID Name Format Price

1 Aliens Blu-ray 13.99

Example 11: Creating a JSON document using columns
SELECT JSON_OBJECT(‘name’, name, ‘format’, format, ‘price’, price) AS data

FROM products

WHERE type = ‘M’;

Data

{“name”: “Tron”, “format”: “Blu-ray”, “price”: 13.99}

8

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Example 12: Creating a JSON document using columns and fields within a JSON document
SELECT JSON_OBJECT(‘name’, name, ‘format’, format, ‘price’, price, ‘resolution’,

JSON_VALUE(attr, ‘$.video.resolution’)) AS data
FROM products
WHERE type = ‘M’;

To create a new JSON document from both columns and fields within an existing JSON document, use JSON_

OBJECT with multiple name/value pairs – the name of the field to be created and either a column name or the

path to a field within a JSON document.

In the example below, the JSON_OBJECT function is used to create and return a new JSON document with fields

for the name, format and price columns and the resolution field within the JSON document (stored in the attr

column).

Data

{“name”: “Aliens”, “format”: “Blu-ray”, “price”: 13.99, “resolution”: “1080p”}

Example 13: Creating a JSON document using non-JSON and JSON columns
In the example below, JSON_MERGE is used to insert the JSON document stored in the attr column into a new
JSON document created from the name and format columns.

SELECT JSON_MERGE(JSON_OBJECT(‘name’, name, ‘format’, format), attr) AS data
FROM products
WHERE type = ‘M’;

Warning: Creating a new JSON document with fields containing arrays and/or objects

Tip: Creating a new JSON document by merging an existing JSON document

JSON_OBJECT will convert the value of every field into a string. It should not be used to create a JSON document with fields
containing array or object values. However, JSON_MERGE can be used create a new JSON document by merging fields,
includes fields with array or object values, from an existing JSON document.

Data

{"name": "Aliens", "format": "Blu-ray", "video": {"resolution": "1080p", "aspectRatio": "1.85:1"}, "cuts": [{"name": "Theatrical",

"runtime": 138}, {"name": "Special Edition", "runtime": 155}], "audio": ["DTS HD", "Dolby Surround"]}

9

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

To search for a value within a JSON document, use JSON_CONTAINS with the name of the column where the JSON

document is stored, the value and, optionally, the path to a specific field to search in.

In the example below, the JSON_CONTAINS function is used to search the JSON document of movies for “DTS HD” in

the audio field, an array. Note, the double quotes have to be escaped in this example.

Example 14: Search the audio field, an array, within a JSON document for “DTS HD”
SELECT id, name, format, price
FROM products
WHERE type = ‘M’ AND

JSON_CONTAINS(attr, ‘\”DTS HD\”’, ‘$.audio’) = 1;

ID Name Format Price

1 Aliens Blu-ray 13.99

Indexes
It is not possible to create an index on a JSON field. However, it is possible to create a virtual column (i.e., generated

column) based on a JSON function, and to index the virtual column. A virtual column can be PERSISTENT or VIRTUAL. If

a virtual column is VIRTUAL, its data is not stored in the database / written to disk.

In the example below, a virtual column, video_resolution, is created based on the value of the resolution field of the

JSON document (stored in the attr column).

Example 15: Create a virtual column based on a field within a JSON document
ALTER TABLE products ADD COLUMN

video_resolution VARCHAR(5) AS (JSON_VALUE(attr, ‘$.video.resolution’)) VIRTUAL;
EXPLAIN SELECT name, format, price
FROM products
WHERE video_resolution = ‘1080p’;

ID Select_type Table Type Possible_keys

1 SIMPLE products ALL NULL

10

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

However, in the example above, per the explain plan, an index will not be used for the query because an index has not

been created on the virtual column.

In the example below, an index, resolutions, is created on the virtual_resolution virtual column (based on the resolution

field within the JSON document stored in the attr column), and per the explain plan, the query will use the index.

Example 16: Create an index on a virtual column based on a JSON field
CREATE INDEX resolutions ON products(video_resolution);

EXPLAIN SELECT name, format, price
FROM products
WHERE video_resolution = ‘1080p’;

ID Select_type Table Ref Possible_keys

1 SIMPLE products ref resolutions

Update
There are separate JSON functions to insert and update fields within JSON documents: JSON_INSERT to insert,

JSON_REPLACE to update and JSON_SET to insert or update.

Example 17: Insert a field into a JSON document
UPDATE products

SET attr = JSON_INSERT(attr, ‘$.disks’, 1)
WHERE id = 1;

SELECT name, format, price,
JSON_VALUE(attr, ‘$.disks’) AS disks

FROM products
WHERE type = ‘M’;

Fields

To insert a field within a JSON document, use JSON_INSERT with the name of the column where the JSON document is

stored, the path of where to insert the field and the value of the field.

In the example below, the field disks is inserted into a JSON document with a value of 1.

Name Format Price Disk

Aliens Blu-ray 13.99 1

11

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

In the example below, a new field, languages, is inserted in a JSON document. The value is an array with two elements:

English and French.

Arrays

To insert a field with an array value into a JSON document, use JSON_INSERT with the name of the column where the

JSON document is stored, the path of where to insert the field and, using JSON_ARRAY, the array value.

Example 18: Insert a field with an array value into a JSON document
UPDATE products

SET attr =JSON_INSERT(attr, ‘$.languages’, JSON_ARRAY(‘English’, ‘French’))
WHERE id = 1;

SELECT name, format, price,
JSON_QUERY(attr, ‘$.languages’) AS languages

FROM products
WHERE type = ‘M’;

Name Format Price Disk

Aliens Blu-ray 13.99 [“English”, “French”]

To insert an element into the array value of a field within a JSON document, use JSON_ARRAY_APPEND with the name

of the column where the JSON document is stored, the path to the array and the element to be inserted into the array

value.

In the example below, “Spanish” is added to the languages array.

Example 19: Update a field with an array value within a JSON document (add element)
UPDATE products

SET attr = JSON_ARRAY_APPEND(attr, ‘$.languages’, ‘Spanish’)
WHERE id = 1;

SELECT name, format, price,
JSON_QUERY(attr, ‘$.languages’) AS languages

FROM products
WHERE type = ‘M’;

Name Format Price Languages

Aliens Blu-ray 13.99 [“English”, “French”, “Spanish”]

12

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

To remove an element from an array within a JSON document, use JSON_REMOVE with the name of the column

where the JSON document is stored and the path to the array with the index position of the element to remove.

In the example below, “English” is removed from array value in the the languages field.

Example 20: Update an array within a JSON document, add an element
UPDATE products

SET attr = JSON_REMOVE(attr, ‘$.languages[0]’)
WHERE id = 1;

SELECT name, format, price,
JSON_QUERY(attr, ‘$.languages’) AS languages

FROM products
WHERE type = ‘M’;

Name Format Price Disk

Aliens Blu-ray 13.99 [“French”, “Spanish”]

Note: JSON_REMOVE can be used to remove any field.

13

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

Example 21: Create a check constraint to validate specific JSON fields
ALTER TABLE products ADD CONSTRAINT check_attr

CHECK (

type != ‘M’ or (type = ‘M’ and

JSON_TYPE(JSON_QUERY(attr, ‘$.video’)) = ‘OBJECT’ and

JSON_TYPE(JSON_QUERY(attr, ‘$.cuts’)) = ‘ARRAY’ and

JSON_TYPE(JSON_QUERY(attr, ‘$.audio’)) = ‘ARRAY’ and

JSON_TYPE(JSON_VALUE(attr, ‘$.disks’)) = ‘INTEGER’ and

JSON_EXISTS(attr, ‘$.video.resolution’) = 1 and

JSON_EXISTS(attr, ‘$.video.aspectRatio’) = 1 and

JSON_LENGTH(JSON_QUERY(attr, ‘$.cuts’)) > 0 and

JSON_LENGTH(JSON_QUERY(attr, ‘$.audio’)) > 0));

In the example below, the INSERT fails and returns an error because it was for a movie without a resolution - it violated

the CHECK constraint the resolution field was missing.

Example 22: Violate a check constraint, a field is missing from the JSON document
INSERT INTO products (type, name, format, price, attr) VALUES

(‘M’, ‘Tron’, ‘Blu-ray’, 29.99, ‘{“video”: {“aspectRatio”: “2.21:1”}, “cuts”: [{“name”: “Theatrical”, “runtime”:96}],
“audio”: [“DTS HD”, “Dolby Digital”], “disks”: 1}’);

ERROR 4025 (23000): CONSTRAINT ‘check_attr’ failed for ‘test’.’products’

Example 23: Violate a check constraint, wrong data type for a field within the JSON document
If the example above, if the value of disks was “one” instead of 1, it would return an error from the JSON_TYPE function
rather than the constraint itself.

INSERT INTO products (type, name, format, price, attr) VALUES
(‘M’, ‘Tron’, ‘Blu-ray’, 29.99, ‘{“video”: {“resolution”: “1080p”, “aspectRatio”: “2.21:1”}, “cuts”: [{“name”: “Theatrical”,
“runtime”: 96}], “audio”: [“DTS HD”, “Dolby Digital”], “disks”: “one”}’);

ERROR 4038 (HY000): Syntax error in JSON text in argument 1 to function ‘json_type’ at position 1

Warning: JSON fields with the wrong data type

14

Data Integrity
While applications control the structure of JSON documents, data integrity can be enforced by the database using

CHECK constraints, introduced in MariaDB Server 10.2, with JSON functions.

In the example below, a CHECK constraint is created to ensure movies have a video resolution and aspect ratio, at least

one cut and at least one audio while books have an author and page count. The constraint ensures these fields exist,

but it does not prevent the application from creating new fields.

Flexible Data Modeling in MariaDB: JSON WHITEPAPER

CONCLUSION

MariaDB Server, with dynamic columns and JSON functions, enables businesses to use a single

database for both structured and semi-structured data, relational and JSON, together. It is no longer

necessary to choose between data integrity and schema flexibility. When dynamic columns are used,

a flexible schema can be created with a relational data model – without sacrificing data integrity,

transactions and SQL.

MariaDB Server is a trusted, proven and reliable database, and with support for flexible schemas and semistructured

data, including JSON, it meets the requirements of modern, mission-critical applications in the digital age - web, mobile

and IoT.

MariaDB Server helps business and developers save time and money by:

• Developing new features without waiting for schema changes

• Developing applications with simpler data models and queries

• Supporting current and future use cases - web, mobile and IoT

• Supporting both legacy and modern applications

• Supporting flexible data models without sacrificing data integrity

15

	mariadb-and-json-flexible-data-modeling_whitepaper_1007
	Skysql

