systemd
MariaDB starting with 10.1.8
The MariaDB systemd
service was first released in MariaDB 10.1.8 on supported Linux distributions.
systemd
is a sysVinit
replacement that is the default service manager on the following Linux distributions:
- RHEL 7 and above
- CentOS 7 and above
- Fedora 15 and above
- Debian 8 and above
- Ubuntu 15.04 and above
- SLES 12 and above
- OpenSUSE 12.2 and above
MariaDB's systemd
unit file is included in the server packages for RPMs and DEBs. It is also included in certain binary tarballs.
The service name is mariadb.service
. Aliases to mysql.service
and mysqld.service
are also installed for convenience.
When MariaDB is started with the systemd
unit file, it directly starts the mysqld
process as the mysql
user. Unlike with sysVinit
, the mysqld
process is not started with mysqld_safe
. As a consequence, options will not be read from the [mysqld_safe]
option group from option files.
Contents
- Locating the MariaDB Service's Unit File
- Interacting with the MariaDB Server Process
- Systemd and Galera Cluster
- Configuring the Systemd Service
- Systemd Socket Activation
- Systemd Socket Activation for Hosting Service Providers
- Systemd Journal
- Converting mysqld_safe Options to Systemd Options
- Known Issues
Locating the MariaDB Service's Unit File
By default, the unit file for the service will be installed in a directory defined at build time by the INSTALL_SYSTEMD_UNITDIR
option provided to cmake
.
For example, on RHEL, CentOS, Fedora, and other similar Linux distributions, INSTALL_SYSTEMD_UNITDIR
is defined as /usr/lib/systemd/system/
, so it will be installed to:
/usr/lib/systemd/system/mariadb.service
And on Debian, Ubuntu, and other similar Linux distributions, INSTALL_SYSTEMD_UNITDIR
is defined as /lib/systemd/system/
, so it will be installed to:
/lib/systemd/system/mariadb.service
Interacting with the MariaDB Server Process
The service can be interacted with by using the systemctl
command.
Starting the MariaDB Server Process on Boot
MariaDB's systemd
service can be configured to start at boot by executing the following:
sudo systemctl enable mariadb.service
Starting the MariaDB Server Process
MariaDB's systemd
service can be started by executing the following:
sudo systemctl start mariadb.service
MariaDB's systemd
unit file has a default startup timeout of about 90 seconds on most systems. If certain startup tasks, such as crash recovery, take longer than this default startup timeout, then systemd
will assume that mysqld
has failed to startup, which causes systemd
to kill the mysqld
process. To work around this, you can reconfigure the MariaDB systemd
unit to have an infinite timeout.
Note that systemd 236 added the EXTEND_TIMEOUT_USEC
environment variable that allows services to extend the startup timeout during long-running processes. Starting with MariaDB 10.1.33, MariaDB 10.2.15, and MariaDB 10.3.6, on systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during certain startup processes that can run long. Therefore, if you are using systemd
236 or later, then you should not need to manually override TimeoutStartSec
, even if your startup tasks, such as crash recovery, run for longer than the configured value. See MDEV-14705 for more information.
Stopping the MariaDB Server Process
MariaDB's systemd
service can be stopped by executing the following:
sudo systemctl stop mariadb.service
Restarting the MariaDB Server Process
MariaDB's systemd
service can be restarted by executing the following:
sudo systemctl restart mariadb.service
Checking the Status of the MariaDB Server Process
The status of MariaDB's systemd
service can be obtained by executing the following:
sudo systemctl status mariadb.service
Interacting with Multiple MariaDB Server Processes
A systemd
template unit file with the name [email protected]
is installed in INSTALL_SYSTEMD_UNITDIR
on some systems. See Locating the MariaDB Service's Unit File to see what directory that refers to on each distribution.
This template unit file allows you to interact with multiple MariaDB instances on the same system using the same template unit file. When you interact with a MariaDB instance using this template unit file, you have to provide an instance name as a suffix. For example, the following command tries to start a MariaDB instance with the name node1
:
sudo systemctl start [email protected]
MariaDB's build system cannot include the [email protected]
template unit file in RPM packages on platforms that have cmake
versions older than 3.3.0, because these cmake
versions have a bug that causes it to encounter errors when packaging a file in RPMs if the file name contains the @
character. MariaDB's RHEL 7 and CentOS 7 RPM build hosts only got a new enough cmake
version starting with MariaDB 10.1.39, MariaDB 10.2.23, and MariaDB 10.3.14. To use this functionality on a MariaDB version that does not have the file, you can copy the file from a package that does have the file.
Default configuration of Multiple Instances in 10.4 and Later
systemd
will also look for an option file for a specific MariaDB instance based on the instance name.
It will use the .%I
as the custom option group suffix that is appended to any server option group, in any configuration file included by default.
In all distributions, the %I
is the MariaDB instance name. In the above node1
case, it would use the option file at the path/etc/mynode1.cnf
.
When using multiple instances, each instance will of course also need their own datadir
, socket
and , port
(unless skip_networking is specified). As mysql_install_db#option-groups reads the same sections as the server, and
ExecStartPre= run mysql_install_db within the service, the instances are autocreated if there is sufficient priviledges.
To use a 10.3 configuration in 10.4 or later and the following customisation in the editor after running sudo systemctl edit [email protected]
:
[Unit] ConditionPathExists= [Service] Environment='MYSQLD_MULTI_INSTANCE=--defaults-file=/etc/my%I.cnf'
Custom configuration of Multiple Instances in 10.4 and Later
Because users may want to do many various things with their multiple instances, we've provided a way to let the user define how they wish their multiple instances to run. The systemd environment variable MYSQLD_MULTI_INSTANCE
can be set to anything that mysqld and mysql_install_db will recognise.
A hosting environment where each user has their own instance may look like
(with sudo systemctl edit [email protected]
):
[Service] ProtectHome=false Environment='MYSQLD_MULTI_INSTANCE=--defaults-file=/home/%I/my.cnf \ --user=%I \ --socket=/home/%I.sock \ --datadir=/home/%I/mariadb_data \ --skip-networking'
Here the instance name is the unix user of the service.
Configuring Multiple Instances in 10.3 and Earlier
systemd
will also look for an option file for a specific MariaDB instance based on the instance name. By default, it will look for the option file in a directory defined at build time by the INSTALL_SYSCONF2DIR
option provided to cmake
.
For example, on RHEL, CentOS, Fedora, and other similar Linux distributions, INSTALL_SYSCONF2DIR
is defined as /etc/my.cnf.d/
, so it will look for an option file that matches the format:
/etc/my.cnf.d/my%I.cnf
And on Debian, Ubuntu, and other similar Linux distributions, INSTALL_SYSCONF2DIR
is defined as /etc/mysql/conf.d//
, so it will look for an option file that matches the format:
/etc/mysql/conf.d/my%I.cnf
In all distributions, the %I
is the MariaDB instance name. In the above node1
case, it would use the option file at the path/etc/my.cnf.d/mynode1.cnf
for RHEL-like distributions and /etc/mysql/conf.d/mynode1.cnf
for Debian-like distributions.
When using multiple instances, each instance will of course also need their own datadir
. See mysql_install_db for information on how to initialize the datadir
for additional MariaDB instances.
Systemd and Galera Cluster
Bootstrapping a New Cluster
When using Galera Cluster with systemd, the first node in a cluster has to be started with galera_new_cluster
. See Getting Started with MariaDB Galera Cluster: Bootstrapping a New Cluster for more information.
Recovering a Node's Cluster Position
When using Galera Cluster with systemd, a node's position in the cluster can be recovered with galera_recovery
. See Getting Started with MariaDB Galera Cluster: Determining the Most Advanced Node for more information.
SSTs and Systemd
MariaDB's systemd
unit file has a default startup timeout of about 90 seconds on most systems. If an SST takes longer than this default startup timeout on a joiner node, then systemd
will assume that mysqld
has failed to startup, which causes systemd
to kill the mysqld
process on the joiner node. To work around this, you can reconfigure the MariaDB systemd
unit to have an infinite timeout. See Introduction to State Snapshot Transfers (SSTs): SSTs and Systemd for more information.
Note that systemd 236 added the EXTEND_TIMEOUT_USEC
environment variable that allows services to extend the startup timeout during long-running processes. Starting with MariaDB 10.1.35, MariaDB 10.2.17, and MariaDB 10.3.8, on systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during long SSTs. Therefore, if you are using systemd
236 or later, then you should not need to manually override TimeoutStartSec
, even if your SSTs run for longer than the configured value. See MDEV-15607 for more information.
Configuring the Systemd Service
You can configure MariaDB's systemd
service by creating a "drop-in" configuration file for the systemd
service. On most systems, the systemd
service's directory for "drop-in" configuration files is /etc/systemd/system/mariadb.service.d/
. You can confirm the directory and see what "drop-in" configuration files are currently loaded by executing:
$ sudo systemctl status mariadb.service ● mariadb.service - MariaDB 10.1.37 database server Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled) Drop-In: /etc/systemd/system/mariadb.service.d └─migrated-from-my.cnf-settings.conf, timeoutstartsec.conf ...
If you want to configure the systemd
service, then you can create a file with the .conf
extension in that directory. The configuration option(s) that you would like to change would need to be placed in an appropriate section within the file, usually [Service]
. If a systemd
option is a list, then you may need to set the option to empty before you set the replacement values. For example:
[Service] ExecStart= ExecStart=/usr/bin/numactl --interleave=all /usr/sbin/mysqld ${MYSQLD_OPTS} ${_WSREP_NEW_CLUSTER} ${_WSREP_START_POSITION}
After any configuration change, you will need to execute the following for the change to go into effect:
sudo systemctl daemon-reload
Useful Systemd Options
Useful systemd
options are listed below. If an option is equivalent to a common mysqld_safe
option, then that is also listed.
mysqld_safe option | systemd option | Comments |
---|---|---|
no option | ProtectHome=false | If any MariaDB files are in /home/ |
no option | PrivateDevices=false | If any MariaDB storage references raw block devices |
no option | ProtectSystem= | If any MariaDB write any files to anywhere under /boot, /usr or /etc |
no option | TimeoutStartSec={time} | Service startup timeout. See Configuring the Systemd Service Timeout. |
no option (see MDEV-9264) | OOMScoreAdjust={priority} | e.g. -600 to lower priority of OOM killer for mysqld |
open-files-limit | LimitNOFILE={limit} | Limit on number of open files. See Configuring the Open Files Limit. |
core-file-size | LimitCORE={size} | Limit on core file size. Useful when enabling core dumps. See Configuring the Core File Size. |
LimitMEMLOCK={size} or infinity | Limit on how much can be locked in memory. Useful when large-pages or memlock is used | |
nice | Nice={nice value} | |
syslog | StandardOutput=syslog | See Configuring MariaDB to Write the Error Log to Syslog. |
StandardError=syslog | ||
SyslogFacility=daemon | ||
SyslogLevel=err | ||
syslog-tag | SyslogIdentifier | |
flush-caches | ExecStartPre=/usr/bin/sync | |
ExecStartPre=/usr/sbin/sysctl -q -w vm.drop_caches=3 | ||
numa-interleave | NUMAPolicy=interleave | from systemd v243 onwards |
or: ExecStart=/usr/bin/numactl --interleave=all /usr/sbin/mysqld ${MYSQLD_OPTS} ${_WSREP_NEW_CLUSTER} ${_WSREP_START_POSITION} | prepending ExecStart=/usr/bin/numactl --interleave=all to existing ExecStart setting | |
no-auto-restart | Restart={exit-status} |
Note: the systemd
manual contains the official meanings for these options. The manual also lists considerably more options than the ones listed above.
There are other options and the mariadb-service-convert
script will attempt to convert these as accurately as possible.
Configuring the Systemd Service Timeout
MariaDB's systemd
unit file has a default startup timeout of about 90 seconds on most systems. If a service startup takes longer than this default startup timeout, then systemd
will assume that mysqld
has failed to startup, which causes systemd
to kill the mysqld
process. To work around this, it can be changed by configuring the TimeoutStartSec
option for the systemd
service.
A similar problem can happen when stopping the MariaDB service. Therefore, it may also be a good idea to set TimeoutStopSec
.
For example, you can reconfigure the MariaDB systemd
service to have an infinite timeout by executing one of the following commands:
If you are using systemd
228 or older, then you can execute the following to set an infinite timeout:
sudo tee /etc/systemd/system/mariadb.service.d/timeoutsec.conf <<EOF [Service] TimeoutStartSec=0 TimeoutStopSec=0 EOF sudo systemctl daemon-reload
Systemd 229 added the infinity option, so if you are using systemd
229 or later, then you can execute the following to set an infinite timeout:
sudo tee /etc/systemd/system/mariadb.service.d/timeoutsec.conf <<EOF [Service] TimeoutStartSec=infinity TimeoutStopSec=infinity EOF sudo systemctl daemon-reload
Note that systemd 236 added the EXTEND_TIMEOUT_USEC environment variable that allows services to extend the startup timeout during long-running processes. On systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during certain startup processes that can run long.
Configuring the Open Files Limit
When using systemd
, rather than setting the open files limit by setting the open-files-limit
option for mysqld_safe
or the open_files_limit
system variable, the limit can be changed by configuring the LimitNOFILE
option for the MariaDB systemd
service. The default is set to LimitNOFILE=16364
in mariadb.service
.
For example, you can reconfigure the MariaDB systemd
service to have a larger limit for open files by executing the following commands:
sudo tee /etc/systemd/system/mariadb.service.d/limitnofile.conf <<EOF [Service] LimitNOFILE=infinity EOF sudo systemctl daemon-reload
An important note is that setting LimitNOFILE=infinity
doesn't actually set the open file limit to infinite.
In systemd
234 and later, setting LimitNOFILE=infinity
actually sets the open file limit to the value of the kernel's fs.nr_open
parameter. Therefore, in these systemd
versions, you may have to change this parameter's value.
The value of the fs.nr_open
parameter can be changed permanently by setting the value in /etc/sysctl.conf
and restarting the server.
The value of the fs.nr_open
parameter can be changed temporarily by executing the sysctl
utility. For example:
sudo sysctl -w fs.nr_open=1048576
In systemd
233 and before, setting LimitNOFILE=infinity
actually sets the open file limit to 65536
. See systemd issue #6559 for more information. Therefore, in these systemd
versions, it is not generally recommended to set LimitNOFILE=infinity
. Instead, it is generally better to set LimitNOFILE
to a very large integer. For example:
sudo tee /etc/systemd/system/mariadb.service.d/limitnofile.conf <<EOF [Service] LimitNOFILE=1048576 EOF sudo systemctl daemon-reload
Configuring the Core File Size
When using systemd
, if you would like to enable core dumps, rather than setting the core file size by setting the core-file-size
option for mysqld_safe
, the limit can be changed by configuring the LimitCORE
option for the MariaDB systemd
service. For example, you can reconfigure the MariaDB systemd
service to have an infinite size for core files by executing the following commands:
sudo tee /etc/systemd/system/mariadb.service.d/limitcore.conf <<EOF [Service] LimitCORE=infinity EOF sudo systemctl daemon-reload
Configuring MariaDB to Write the Error Log to Syslog
When using systemd
, if you would like to redirect the error log to the syslog, then that can easily be done by doing the following:
- Ensure that
log_error
system variable is not set. - Set
StandardOutput=syslog
. - Set
StandardError=syslog
. - Set
SyslogFacility=daemon
. - Set
SysLogLevel=err
.
For example:
sudo tee /etc/systemd/system/mariadb.service.d/syslog.conf <<EOF [Service] StandardOutput=syslog StandardError=syslog SyslogFacility=daemon SysLogLevel=err EOF sudo systemctl daemon-reload
If you have multiple instances of MariaDB, then you may also want to set SyslogIdentifier
with a different tag for each instance.
Configuring LimitMEMLOCK
If using --memlock or the iouring in InnoDB in MariaDB 10.6, you will need to raise the LimitMEMLOCK limit.
sudo tee /etc/systemd/system/mariadb.service.d/limitcore.conf <<EOF [Service] LimitMEMLOCK=2M EOF sudo systemctl daemon-reload
Note: Prior to MariaDB 10.1.10, the --memlock option could not be used with the MariaDB systemd
service.
Configuring Access to Home Directories
MariaDB's systemd unit file restricts access to /home
, /root
, and /run/user
by default. This restriction can be overriden by setting the ProtectHome option to false
for the MariaDB systemd
service. This is done by creating a "drop-in" directory /etc/systemd/system/mariadb.service.d/
and in it a file with a .conf
suffix that contains the ProtectHome=false
directive.
You can reconfigure the MariaDB systemd
service to allow access to /home
by executing the following commands:
sudo mkdir /etc/systemd/system/mariadb.service.d sudo tee /etc/systemd/system/mariadb.service.d/dontprotecthome.conf <<EOF [Service] ProtectHome=false EOF sudo systemctl daemon-reload
Configuring the umask
When using systemd
, the default file permissions of mysqld
can be set by setting the UMASK
and UMASK_DIR
environment variables for the systemd
service. For example, you can configure the MariaDB systemd
service's umask by executing the following commands:
sudo tee /etc/systemd/system/mariadb.service.d/umask.conf <<EOF [Service] Environment="UMASK=0750" Environment="UMASK_DIR=0750" EOF sudo systemctl daemon-reload
These environment variables do not set the umask. They set the default file system permissions. See MDEV-23058 for more information.
Keep in mind that configuring the umask this way will only affect the permissions of files created by the mysqld
process that is managed by systemd
. The permissions of files created by components that are not managed by systemd
, such as mysql_install_db
, will not be effected.
See Specifying Permissions for Schema (Data) Directories and Tables for more information.
Systemd Socket Activation
MariaDB starting with 10.6.0
MariaDB can use systemd's socket activation.
This is an on-demand service for MariaDB that will activate when required.
Systemd socket activation uses a mariadb.socket
definition file to define a set of UNIX and TCP sockets. Systemd will listen on these sockets, and when they are connected to, systemd will start the mariadb.service
and hand over the socket file descriptors for MariaDB to process the connection.
MariaDB remains running at this point and will have all sockets available and process connections exactly like it did before 10.6.
When MariaDB is shut down, the systemd mariadb.socket
remains active, and a new connection will restart the mariadb.service
.
Using Systemd Socket Activation
To use MariaDB systemd socket activation, instead of enabling/starting mariadb.service
, mariadb.socket
is used instead.
So the following commands work exactly like the mariadb.service
equivalents.
systemctl start mariadb.socket systemctl enable mariadb.socket
These files alone only contain the UNIX and TCP sockets and basic network connection information to which will be listening for connections. @mariadb
is a UNIX abstract socket, which means it doesn't appear on the filesystem. Connectors based on MariaDB Connector/C will be able to connect with these by using the socket name directly, provided the higher level implementation doesn't try to test for the file's existence first. Some connectors like PHP use mysqlnd that is a pure PHP implementation and as such will only be able to connect to on filesystem UNIX sockets.
With systemd activated sockets there is only a file descriptor limit on the number of listening sockets that can be created.
When to Use Systemd Socket Activation
A common use case for systemd socket activated MariaDB is when there needs to be a quick boot up time. MariaDB needs to be ready to run, but it doesn't need to be running.
The ideal use case for systemd socket activation for MariaDB is for infrastructure providers running many multiple instances of MariaDB, where each instance is dedicated for a user.
Downsides to Using Systemd Socket Activiation
From the time the connection occurs, the client is going to be waiting until MariaDB has fully initialized before MariaDB can process the awaiting connection. If MariaDB was previously hard shutdown and needs to perform an extensive InnoDB rollback, then the activation time may be larger than the desired wait time of the client connection.
Configuring Systemd Socket Activation
When MariaDB is run under systemd socket activation, the usual socket , port, and backlog system variables are ignored, as these settings are contained within the systemd socket definition file.
There is no configuration required in MariaDB to use MariaDB under socket activation.
The systemd options available are from the systemd documentation
, however ListenStream
and BackLog
would be the most common configuration options.
As MariaDB isn't creating these sockets, the sockets don't need to be created with a mysql
user. The sockets MariaDB may end up listening to under systemd socket activation, it may have not had the privileges to create itself.
Changes to the default mariadb.socket
can be made in the same way as services, systemctl edit mariadb.socket
, or using /etc/systemd/system/mariadb.socket.d/someconfig.conf
files.
Extra Port
A systemd socket can be configured as an extra_port, by using the
FileDescriptorName=extra in the
.socket file.
The mariadb-extra.socket
is already packaged and ready for use.
Multi-instance socket activation
[email protected]
is MariaDB's packaged multi-instance defination. It creates multiple UNIX sockets based on the socket file started.
Starting [email protected]
will use the [email protected]
defination with %I
within the defination replaced with "bob".
When something connects to a socket defined there, the [email protected]
will be started.
Systemd Socket Activation for Hosting Service Providers
A systemd socket activation service with multi-instance can provide an on-demand per user access to a hosting service provider's dedicated database.
"User", in this case, refers to the customer of the hosting service provider.
End User Benefits
This provides the following benefits for the user:
- Each user has their own dedicated instance with the following benefits:
- The instance is free from the database contention of neighbors on MariaDB shared resources (table cache, connections, etc)
- The user is free to change their own configuration of MariaDB, within the limits and permissions of the service provider.
- Database service level backups, like mariabackup, are now directly available.
- A user can install their own plugins.
- The user can run a different database version to their neighbors.
- If a user's neighbor triggers a fault in the server, the uder's instance isn't affected.
- The database runs as their unix user in the server facilitating:
- User can directly migrate their MariaDB data directory to a different provider.
- The user's data is protected from other users on a kernel level.
Hosting Service Provider Benefits
In addition to providing user benefits as a sales item, the following are additional benefits for the hosting service provider compared to a monolith service:
- Without passwords for the database, while still having security, support may be easier.
- When a user's database isn't active, there is no resource usage, only listening file descriptors by systemd.
- The socket activation transparently, with a minor startup time, starts the service as required.
- When the user's database hasn't had any activity after a time, it will deactivate (MDEV-25282).
- Planned enhancements in InnoDB provide:
- an on-demand consumption of memory (MDEV-25340 .
- a proactive reduction in memory (MDEV-25341).
- a memory resource pressure reduction in memory use (MDEV-24670).
- The service provider can still cap the user's database memory usage in a ulimit way that a user cannot override in settings.
- The service provider may choose a CPU/memory/IO based billing to the user on Linux cgroup accounting rather than the available comprared to the rather limited options in
CREATE USER
. - Because a user's database will shutdown when inactive, a database upgrade on the server will not take effect for the user until it passively shuts down, restarts, and then gets reactivated hence reducing user downtime..
Downsides to the Hosting Service Provider
The extra memory used by more instances. This is mitigated by the on-demand activation. The deactivation when idle, and improved InnoDB memory management.
With plenty of medium size database servers running, the Linux OOM kill has the opportunity to kill off only a small number of database servers running rather than everyones.
Example on configuration Items for a per user, systemd socket activitated multi-instance service
From a server pespective the operation would be as follows;
To make the socket ready to connect and systemd will be listening to the socket:
# systemctl start [email protected] # systemctl start [email protected]
To enable this on reboot (the same way as a systemd service):
# systemctl enable [email protected] # systemctl enable [email protected]
A MariaDB Template File
A global template file. Once installed as a user's $HOME/.my.cnf
file, it will becomes the default for many applications, and the MariaDB server itself.
# cat /etc/my.cnf.templ [client] socket=/home/USER/mariadb.sock [client-server] user=USER [mariadbd] datadir=/home/USER/mariadb-datadir
Custom Configuration for the Multiinstance Service
This extends/modifies the MariaDB multi-instance service.
The feature of this extension are:
- that it will autocreate configuration file for user applications
- It will install the database on first service start
auth-root-*
in mariadb-install-db means that the user is their own privileged user with unix socket authentication active. This means non-that user cannot access another users service, even with access to the unix socket(s). For more information see #unix socket authentication security.
- If the MariaDB version was upgrade, the upgrade changes are made automaticly
LimitData
places a hard upper limit so the user doesn't exceed a portion of the server resources
# cat /etc/systemd/system/[email protected]/user.conf [Service] User=%I ProtectHome=false Environment=MYSQLD_MULTI_INSTANCE="--defaults-file=/home/%I/.my.cnf" ExecStartPre= ExecStartPre=/bin/sh -c "[ -f /home/%I/.my.cnf ] || sed -e \"s/USER/%I/g\" /etc/my.cnf.templ > /home/%I/.my.cnf" ExecStartPre=mkdir -p /home/%I/mariadb-datadir ExecStartPre=/usr/bin/mariadb-install-db $MYSQLD_MULTI_INSTANCE --rpm \ --auth-root-authentication-method=socket --auth-root-socket-user=%I ExecStartPost=/usr/bin/mariadb-upgrade $MYSQLD_MULTI_INSTANCE # To limit user based tuning LimitData=768M # For io_uring use by innodb on < 5.12 kernels LimitMEMLOCK=1M
Custom Configuration for the Multi-instance Socket
This extends/modifies the MariaDB socket defination to be per user.
Create sockets based on the user of the istance (%I
). Permissions are only necessary in the sense that the user can connect to them. It won't matter to the server. Access control is enforced within the server, however if the user web services are run as the user, Mode=777
can be reduced. @mariadb-%I
is a abstract unix socket not on the filesystem. It may help if a user is in a chroot. Not all applications can connect to abstract sockets.
# cat /etc/systemd/system/[email protected]/user.conf [Socket] SocketUser=%I SocketMode=777 ListenSteam= ListenStream=@mariadb-%I ListenStream=/home/%I/mariadb.sock
The extra socket provides the user the ability to access the server when all max-connections are used:
# cat /etc/systemd/system/[email protected]/user.conf [Socket] SocketUser=%I SocketMode=777 ListenSteam= ListenStream=@mariadb-extra-%I ListenStream=/home/%I/mariadb-extra.sock
Systemd Journal
systemd
has its own logging system called the systemd
journal. The systemd
journal contains information about the service startup process. It is a good place to look when a failure has occurred.
The MariaDB systemd
service's journal can be queried by using the journalctl
command. For example:
$ sudo journalctl n 20 -u mariadb.service -- Logs begin at Fri 2019-01-25 13:49:04 EST, end at Fri 2019-01-25 18:07:02 EST. -- Jan 25 13:49:15 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Starting MariaDB 10.1.37 database server... Jan 25 13:49:16 ip-172-30-0-249.us-west-2.compute.internal mysqld[2364]: 2019-01-25 13:49:16 140547528317120 [Note] /usr/sbin/mysqld (mysqld 10.1.37-MariaDB) starting as process 2364 ... Jan 25 13:49:17 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Started MariaDB 10.1.37 database server. Jan 25 18:06:42 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Stopping MariaDB 10.1.37 database server... Jan 25 18:06:44 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Stopped MariaDB 10.1.37 database server. Jan 25 18:06:57 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Starting MariaDB 10.1.37 database server... Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: mariadb.service start-pre operation timed out. Terminating. Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Failed to start MariaDB 10.1.37 database server. Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Unit mariadb.service entered failed state. Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: mariadb.service failed.
Converting mysqld_safe Options to Systemd Options
mariadb-service-convert
is a script included in many MariaDB packages that is used by the package manager to convert mysqld_safe
options to systemd
options. It reads any explicit settings in the [mysqld_safe]
option group from option files, and its output is directed to /etc/systemd/system/mariadb.service.d/migrated-from-my.cnf-settings.conf
. This helps to keep the configuration the same when upgrading from a version of MariaDB that does not use systemd
to one that does.
Implicitly high defaults of open-files-limit
may be missed by the conversion script and require explicit configuration. See Configuring the Open Files Limit.